热度 1||
在量子场论(QFT)中,逆温度(β)与虚时间之间的关系确实是一个深奥的主题。在QFT和多体量子系统中,经常使用Wick旋转技巧将真实时间的演化转化为虚时间,从而将一个量子演化问题转化为有限温度下的统计力学问题。这种关系在以下识别中得到体现: τ=it 其中τ是虚时间,t是实际时间。这一连接是量子力学和量子场论的路径积分公式的核心。
截至我在2021年9月的最后一次更新,这个从QFT直接转移过来的想法还没有成为机器学习(ML)的主流或标准工具。但是,确实有一些交叉点和灵感来源:
量子机器学习:随着量子计算的进一步发展,量子机器学习领域正在逐渐崭露头角,其中量子系统被用来加速某些计算或以新颖的方式解决问题。来自量子力学,包括来自QFT的原理,可能会影响这个领域的方法论。
解析延续和复值网络:虽然不是直接应用Wick旋转,但对可以取复数值的激活的复值神经网络有一些兴趣。解析延续是一种数学技术,与Wick旋转背后的想法有些关系,它可以将函数延续到复值域。
模拟量子系统:机器学习模型,特别是神经网络,已被用来建模、预测或优化量子系统的行为,包括那些由QFT描述的行为。在这些背景下,理解温度、实时和虚时之间的关系是至关重要的。
统计力学和ML:统计力学与机器学习之间更广泛的联系,例如Boltzmann机器这样的基于能量的模型,可以被视为一个间接的影响。这些模型借鉴了能量景观、熵和统计力学及其量子对应物中也突出特征的整体平均的概念。
话虽如此,随着ML的持续发展,研究者们在寻找更精密或微妙的方法来解决问题时,QFT和ML方法论之间的深层次连接完全有可能出现。请始终关注跨学科领域的最新研究!
GMT+8, 2024-12-5 18:14 , Processed in 0.011966 second(s), 9 queries , Memcache On.
Powered by Discuz! X2.5