用户注册 登录
珍珠湾全球网 返回首页

岳东晓 -- 珍珠湾全球网 ... http://ydx.zzwave.com [收藏] [复制] [分享] [RSS] 岳东晓 -- 珍珠湾全球网

日志

从行列式到量子物理:中国古代数学的新生命

热度 1已有 1007 次阅读2017-1-18 09:49 |个人分类:科普|系统分类:教育| 中国古代, 行列式, 数学

爱斯基摩人的主要食物是海豹,但据说有一支爱斯基摩人的语言里没有海豹一词;每当爱斯基摩猎人相遇交换海豹信息的时候,需要说一大堆描述性的话才能说明是海豹这个动物。可以想象,这个表达的笨拙大大地约束了爱斯基摩的文学发展。假如他们要歌颂两个海豹猎人的传说,将会非常难以表达、记忆、传承。类似的,数学符号相当于数学语言的单词。古代中国人数学水平确实不低,但后来发展缓慢,为什么呢?我认为,原因之一是中国没有意识到符号表达数学关系的威力,没有发明各种的符号扩充数学语言的词汇量。如果把数学看成一个语言艺术领域,中国数学作品的相对贫乏就不可避免了

行列式(Det: DETERMINANT)中学就学了。一个方形矩阵计算行列式,算大的矩阵要先算小的,符号还得交替变换。知其然不知其所以然,一头雾水。后来读西方写的数学史,才知道中国人早在《九章算术》(公元前2世纪)里就用到了行列式,而西方数学在两千年之后才用到。我们得承认,我们的古代祖先确实聪明,但后人就不行了,到唐朝时《九章算术》很多题目已经没人会做了。而西方则把这些数学步步推进,行列式在数学、物理经常出现。这个 det 符号往往令人望而生畏。它到底是什么?

先看一个简单的二元一次方程组:
a x + b y = e
c x + d y = f

简单的消元
ca x + cb y = c e
ac x + ad y = a f

得出         (ad - cb ) y = af - ce
类似的: (da - bc ) x = de - bf

对比原来的方程组,这样对角相乘、然后相减的数 ad -bc 出现了,同一行、同一列的数字不会出现。这个数字我们称之为行列式。如果扩展到三元一次方程组,也有类似的数出现,但公式就复杂多了,因为有9个数字进行三个相乘(但同一行、同一列数字不会出现在一个乘积里)。九章算术里面解多元方程就是这么列阵进行。继续计算,可以发现中学数学里学到的递归计算规律。这是一个(线性)代数的理解。

数学与物理中,我们往往发现仅仅是符号的变化就能大大的简化各种推导与表达,甚至使很多看似复杂的结果变得非常显然。麦克斯韦尔的电磁学 论文发表时还没有矢量符号与偏微分符号,他的论文列出20多个分量方程,看得人眼花缭乱,根本不像现在这么优美简洁。狄拉克发明了 bra - ket 之后,量子力学的各种计算都大大简化,几乎成了机械套用。杨振宁当年为了找到规范场的数学 表达费了很长时间摸索,用 differential form 看,就是几分钟的事情。在这篇博文里,我做了一个CHERN- SIMONS场方程的推导,仅仅是几行;其中一行 $(\partial^a\epsilon_{ba\nu} - \sigma g_{b\nu})(\partial_{\mu} \epsilon^{f\mu\nu}-\sigma g^{\nu f}) B_f=0$,如果不是使用所谓 Einstein 的重复求和等规则,而是把各个分量摊开,这么多上标、下标,估计需要写满好几张纸,会看得我头昏眼花。

从几何上理解行列式,将每一列视为一个向量,行列式就是这些向量构成的多维多面体的体积(有朝向的)。在数学上,与向量结合而产生数字并且满足线性关系的量叫着张量。这个把多个向量吃入,输出体积的张量就是我们经常遇到的 Levi-Civita 符号 $\epsilon{...}$ 。这是一个全反对称张量,当下标是 12... 时,数值为1,交换两个下标数字符号相反。

二维的情况: $\epsilon_{12}=-\epsilon_{21} =1, \epsilon_{11}=\epsilon_{22}=0$ 。

三维情况:   $\epsilon_{123} = - \epsilon_{132} =  - \epsilon_{213} =   \epsilon_{231} = - \epsilon_{321} = \epsilon_{312}=1$,其余均为零。

用这个 $\epsilon_{...}$ 符号, n x n的矩阵  $A$ 的行列式 为

$\det A = \epsilon_{i_1 .. i_n} A_{1\  i_1}\cdots A_{n\ i_n}$ 

这个表达适用于任意的 n 。以 2 x 2 矩阵为例, 

$\det A = \epsilon_{12} A_{11} A_{22} + \epsilon_{21} A_{12} A_{21} = A_{11} A_{22} - A_{12} A_{21}$ ,对角相乘减去斜对角相乘,这是中学数学都学了的。有兴趣地读者可以试试 3 x 3 矩阵的情况。

中国人发明的行列式在物理中运用极为广泛,但也是一种大大扩展了的运用。古希腊人把行星的运动用圆来解释,不行的话大圆加上小圆。类似的,物理中最基本构件是简谐振子。最基本的物理规律可以说就是没有规律。据 DYSON 回忆,费曼曾对他说一个粒子的运动其实是任意的,选择任何路径,可以跑到月球然后再回来,你把这些路径的几率(复数振幅)加起来就得到了实际结果。DYSON当时回答说:你疯了!当然我们知道,费曼没有疯。恰恰相反,他发现了最深刻的自然规律:路径积分。用费曼的路径积分来分析弹簧振子,把弹簧振子所有可能的路径加起来,包括飞出银河系再回来,有的读者可能会说,弹簧超光速拉伸出银河系早崩 断 -- 疯了。不是这样,费曼怎么是天才呢?总之,我们用费曼方法应该能得到这个经典力学弹簧的结果:在时间为弹簧振子的经典周期的时候,它应该有很大的几率复位。弹簧振子的拉格朗日为$L = \frac{1}{2} m v^2 -  \frac{1}{2} k \ x^2$。剩下的这个路径积分是一个数学问题,简言之就是将所有可能的路径的作用量作为几率相角,然后将几率相加。这听起来可能令数学家们头皮发麻,但是理论物理却是家常便饭。下面我略加演示,请大家注意这个 Det 的出现。

首先,

 $L = \frac{1}{2} m (\frac{dx}{dt})^2 - \frac{1}{2} k \ x ^2 = \frac{1}{2} m [ \frac{d}{dt} (x \frac{dx}{dt}) - x \frac{d^2 x}{dt^2}] - \frac{1}{2} k \ x^2\\= - \frac{1}{2}\  x\  [m\ \frac{d^2}{dt^2} + k ] \ x +\frac{1}{2} m \frac{d}{dt} (x \frac{dx}{dt})$,

令 $A =  - m\ \frac{d^2}{dt^2} - k   $, 则从 t=0, x=0, 到 t=T, x=0 的路径积分为 (自然单位 $\hbar=1$),

$G = \int \mathcal {D}x \ e^ {i \int L(x)\ dt} = \int \mathcal{ D} x\ \exp(\frac{i}{2}\int dt \ x \ A\ x ) = \frac{C}{\sqrt{\det A}}$

因为边界条件,L中的全微分项没有了。上面的积分是个高斯积分,C是一个常数。如果A 是一个矩阵,应该不难理解。把 A 对角化,对角相乘就是该矩阵的行列式。但我们的 A 不是矩阵,而是 一个微分算符。也就是说,上面的结果是

$G \propto \left[\det ( - m\ \frac{d^2}{dt^2} - k)\right]^{-\frac{1}{2}}$

最早出现于九章算术的行列式 det 在现代物理学中大放光彩。


路过

鸡蛋

鲜花

支持

雷人

难过

搞笑
 

评论 (0 个评论)

facelist

您需要登录后才可以评论 登录 | 用户注册

Archiver|手机版|珍珠湾全球网

GMT+8, 2017-4-30 22:50 , Processed in 0.027431 second(s), 8 queries , Apc On.

Powered by Discuz! X2.5

回顶部